
 

20410 Town Center Lane, Suite 295 Cupertino, CA 95014   Tel: 408.253.8808   Fax: 408.253.4008    www.imaxsoft.com

 
OPENTURBO Performance Audit Report 

ORACLE 
March 14, 2005 

 
Introduction 
 
The IMAXSOFT benchmark environment has a 2-node 9iRAC environment running Oracle 
Enterprise 9.2.0.1 64-bit RDBMS. The nodes are configured identically with 15GB RAM, 2 
CPU’s, and a fiber-switch connection to a HP EVA SAN device with a single shared volume 
consisting of 14 physical drives. The database environment was essentially created following 
the guidelines set forth by Oracle documentation, and many defaults were taken if proper 
values were not known for configuration parameters. However, all setup was done using best 
practices at the minimum. 
 
A third party independent firm was tasked with performing a thorough analysis of the 
environment to determine if any performance improvements could be made, or find any 
problems within the RAC environment itself. The independent firm provided a list of findings 
and recommendations that were performed to IMAXSOFT. 
 
The IMAXSOFT OPENTURBO 2.0 made significant performance improvements to their core, 
which improved performance 2 to 3 times. However, there is still a desire for better 
performance, and a lingering feeling that the database is still the culprit of the performance 
problems. 
 
The independent firm has now been tasked to perform a more in depth, thorough analysis of 
the database by taking statistical measurements of a batch job, and capture information 
about its activities in real time. 
 
Methodology 
 
Using the independent firm best practices in Performance Tuning, and respecting 
time/budgetary constraints, the following tasks were performed to gather and analyze the 
data to make proper recommendations: 
 
1. Database statistical snapshots – memory utilization, wait statistics, latch contention, I/O 

utilization, CPU utilization, parameter settings, object statistics. This was done using the 
Oracle Statspack utility that took snapshots of all database statistics in 15 minute 
increments during the run of the batch job. 

2. Server utilization – top, sar, and vmstat. 
3. Session traces – This was generated using Oracle Trace utilities and then parsed using 

the Oracle TKPROF utility to format and aggregate the statistics of the batch job run. 
 
Findings 
 
Batch Job Session Trace 
 
NOTE: Please reference tkprof_20040730.out for referencing statistics 
 
This report contains information regarding all of the SQL that was performed by a given 
session. Here is a brief definition of the fields contained within this report: 
 
SQL Trace Facility Statistics: 
 

 
Performance Audit Report - 1 



 

20410 Town Center Lane, Suite 295 Cupertino, CA 95014   Tel: 408.253.8808   Fax: 408.253.4008    www.imaxsoft.com

TKPROF lists the statistics for a SQL statement returned by the SQL trace facility in rows and 
columns. Each row corresponds to one of three steps of SQL statement processing: 
 
o PARSE 
This step translates the SQL statement into an execution plan. 
This includes checks for proper security authorization and checks or the existence of tables, 
columns, and other referenced objects. 
 
o EXECUTE 
This step is the actual execution of the statement by Oracle. 
For INSERT, UPDATE, and DELETE statements, this step modifies the data. For SELECT 
statements, the step identifies the selected rows. 
 
o FETCH 
This step retrieves rows returned by a query. 
Fetches are only performed for SELECT statements. 
 
The step for which each row contains statistics is identified by the value of the call column. 
The other columns of the SQL trace facility output are combined statistics for all parses, all 
executes, and all fetches of a statement: 
 
COUNT: Number of times a statement was parsed, executed, or fetched. 
 
CPU: Total CPU time in seconds for all parse, execute, or fetch calls for the statement. 
 
ELAPSED: Total elapsed time in seconds for all parse, execute, or fetch calls for the 

statement. 
 
DISK: Total number of data blocks physically read from the datafiles on disk for all 

parse, execute, or fetch calls. 
 
QUERY: Total number of buffers retrieved in consistent mode for all parse, execute, or 

fetch calls. Buffers are usually retrieved in consistent mode for queries. 
 
CURRENT: Total number of buffers retrieved in current mode. Buffers are often retrieved in 

current mode for INSERT, UPDATE, and DELETE statements. 
 
+ The sum of QUERY & CURRENT is the total number of buffers accessed. 
 
ROWS: Total number of rows processed by the SQL statement. This total does not 

include rows processed by sub-queries of the SQL statement. 
 
This report summarizes ALL of the activities of this batch job, so there is nothing in here that 
is missing, nor unrelated to the batch job. 
 
I would like to go through each of the captured queries and explain what is being reported: 
 
Here is the first captured query and its related statistics: 
 
SELECT 
DIST_ID, SPONSOR_ID, APPL_NAME, COUNTRY_CODE, ALLERGIC_FLAG, COUNT_FLAG, 
APPL_DT, STATUS, RANK, GSV_ACCUM, GSV_ERR_ALLOW_FG, GSV_AMT_02, 
GSV_AMT_03, GSV_AMT_04, GSV_AMT_05, GSV_AMT_06, GSV_AMT_07, GSV_AMT_08, 
GSV_AMT_12, GSV_AMT_13, PSV_ACCUM, PSV_ERR_ALLOW_FG, PSV_ERR_ALLOW_MO, 
PSV_AMT_02, PSV_AMT_03, PSV_AMT_04, PSV_AMT_05, PSV_AMT_06, PSV_AMT_07, 
PSV_AMT_08, PSV_AMT_12, PSV_AMT_13, REBATE_AMT, MTD_1099_AMT, 

 
Performance Audit Report - 2 



 

20410 Town Center Lane, Suite 295 Cupertino, CA 95014   Tel: 408.253.8808   Fax: 408.253.4008    www.imaxsoft.com

NUM_MO_INACTIVE, GRP_DEV_BON_AMT, PRES_PNTS_MTD, NUM_OF_NEW_DIST, 
PREV_AR_BAL, PREV_AR_BAL_CN, DIST_FLAG2, TRNS_SV, INV_SV, PSV_BONUS, 
NUM_OF_NEW_ASST, NEW_TRAINER_SAB, PNTS_SAB, RECRUIT_CNT, SAB_FLAG, 
RECRUIT_TRN_CNT, COUNT_TRN_FLAG, NO_SUP_SAB, RECRUIT_SUP_CNT, 
RECRUIT_MGR_CNT, COUNT_MGR_FLAG, PNTS_SAB_SUP, PREV_INV_SV, PREV_PSSV, 
IMAXSOFT13_SEQ_NO 
FROM 
SUNGB.DIST_G WHERE DIST_ID = :m 
 
call      count      cpu    elapsed       disk      query    current    rows 
------- ------- -------- ---------- ---------- ---------- ---------- ------- 
Parse         0     0.00       0.00          0          0          0       0 
Execute 2098163    56.39      50.84          0          0          0       0 
Fetch   4196326   153.42     155.87          0    8392703          0 2098163 
------- ------- -------- ---------- ---------- ---------- ---------- ------- 
total   6294489   209.81     206.72          0    8392703          0 2098163 
 
Misses in library cache during parse: 0 
Optimizer goal: CHOOSE 
Parsing user id: 31 (SUNGB) 
 
Rows    Execution Plan 
------- --------------------------------------------------- 
      0 SELECT STATEMENT GOAL: CHOOSE 
      0 TABLE ACCESS (BY INDEX ROWID) OF 'DIST_G' 
      0 INDEX (UNIQUE SCAN) OF 'PK_DIST_G' (UNIQUE) 
 

This query was executed 2098163 times during this batch job. This is a recurring theme that 
I’m going to be bringing up throughout this section since the number of times these queries 
are executed actually equal or far exceed the number of total rows in the tables! That is quite 
strange, and seems inefficient. So, this query was actually executed for every single row in 
the DIST_G table. However, the good news is that this query NEVER went to disk, and the 
total elapsed time for all executions of this query was 206 seconds (3 minutes 26 seconds). 
 
You can see according to the execution plan (explain plan) that the query is indeed 
efficient, and is performing as it should. 
 
SELECT IMAXSOFT13_SEQ_NO FROM SUNGB.AR_TRAN_G WHERE DIST_ID = :m ORDER 
BY IMAXSOFT13_SEQ_NO ASC 
 
call      count      cpu    elapsed       disk      query    current    rows 
------- ------- -------- ---------- ---------- ---------- ---------- ------- 
Parse         0     0.00       0.00          0          0          0       0 
Execute  420286    15.66      14.51          0          0          0       0 
Fetch    459658    26.43      26.01          0    1334390          0  129818 
------- ------- -------- ---------- ---------- ---------- ---------- ------- 
total    879944    42.09      40.53          0    1334390          0  129818 
 
Misses in library cache during parse: 0 
Optimizer goal: CHOOSE 
Parsing user id: 31 (SUNGB) 
 
Rows    Execution Plan 
------- --------------------------------------------------- 
      0 SELECT STATEMENT GOAL: CHOOSE 
      0 SORT (ORDER BY)  
      0 TABLE ACCESS (BY INDEX ROWID) OF 'AR_TRAN_G' 
      0 INDEX (RANGE SCAN) OF 'IDX_AR_TRAN_G' (NON-UNIQUE) 

 
This query is actually executed almost 4x more than the actual number of records in the 
object! Again, the good news is that the total elapsed time of the execution/parse of these 
queries is only 40 seconds. The explain plan shows pure efficiency in the way the query is 
executed. 
 
UPDATE SUNGB.DIST_G SET 
DIST_ID=:v0, SPONSOR_ID=:v1, APPL_NAME=:v2, COUNTRY_CODE=:v3, 
ALLERGIC_FLAG=:v4, COUNT_FLAG=:v5, APPL_DT=:v6, STATUS=:v7, RANK=:v8, 

 
Performance Audit Report - 3 



 

20410 Town Center Lane, Suite 295 Cupertino, CA 95014   Tel: 408.253.8808   Fax: 408.253.4008    www.imaxsoft.com

GSV_ACCUM=:v9, GSV_ERR_ALLOW_FG=:v10, GSV_AMT_02=:v11, GSV_AMT_03=:v12, 
GSV_AMT_04=:v13, GSV_AMT_05=:v14, GSV_AMT_06=:v15, GSV_AMT_07=:v16, 
GSV_AMT_08=:v17, GSV_AMT_12=:v18, GSV_AMT_13=:v19, PSV_ACCUM=:v20, 
PSV_ERR_ALLOW_FG=:v21, PSV_ERR_ALLOW_MO=:v22, PSV_AMT_02=:v23, 
PSV_AMT_03=:v24, PSV_AMT_04=:v25, PSV_AMT_05=:v26, PSV_AMT_06=:v27, 
PSV_AMT_07=:v28, PSV_AMT_08=:v29, PSV_AMT_12=:v30, PSV_AMT_13=:v31, 
REBATE_AMT=:v32, MTD_1099_AMT=:v33, NUM_MO_INACTIVE=:v34, 
GRP_DEV_BON_AMT=:v35, PRES_PNTS_MTD=:v36, NUM_OF_NEW_DIST=:v37, 
PREV_AR_BAL=:v38, PREV_AR_BAL_CN=:v39, DIST_FLAG2=:v40, TRNS_SV=:v41, 
INV_SV=:v42, PSV_BONUS=:v43, NUM_OF_NEW_ASST=:v44, NEW_TRAINER_SAB=:v45, 
PNTS_SAB=:v46, RECRUIT_CNT=:v47, SAB_FLAG=:v48, RECRUIT_TRN_CNT=:v49, 
COUNT_TRN_FLAG=:v50, NO_SUP_SAB=:v51, RECRUIT_SUP_CNT=:v52, 
RECRUIT_MGR_CNT=:v53, COUNT_MGR_FLAG=:v54, PNTS_SAB_SUP=:v55, 
PREV_INV_SV=:v56, PREV_PSSV=:v57 
WHERE IMAXSOFT13_SEQ_NO = :m0 
 
call      count      cpu    elapsed       disk      query    current    rows 
------- ------- -------- ---------- ---------- ---------- ---------- ------- 
Parse         0     0.00       0.00          0          0          0       0 
Execute 2460247   585.94     599.80          0    7397919    3109508 2460247 
Fetch         0     0.00       0.00          0          0          0       0 
------- ------- -------- ---------- ---------- ---------- ---------- ------- 
total   2460247   585.94     599.80          0    7397919    3109508 2460247 
 
Misses in library cache during parse: 0 
Optimizer goal: CHOOSE 
Parsing user id: 31 (SUNGB) 
 
Rows    Execution Plan 
------- --------------------------------------------------- 
      0 UPDATE STATEMENT GOAL: CHOOSE 
      0 UPDATE OF 'DIST_G' 
      0 INDEX (UNIQUE SCAN) OF 'I01_DIST_G' (UNIQUE) 

 
This update was executed for each record in the database with a total elapsed time of 600 
seconds (10 minutes). Again, efficient access paths were used for this query. 
 
There are a few more queries that you can see in the output file, and it is really more of the 
same of what I have already mentioned. 
 
Here is the aggregate information for ALL SQL performed by the batch job: 
 
OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS 
 
call      count      cpu    elapsed       disk      query    current    rows 
------- -------- -------- ---------- ---------- ---------- ---------- ------- 
Parse          0     0.00       0.00          0          0          0       0 
Execute  5547713   679.00     683.74          0    7397919    3109508 2460247 
Fetch    5483705   225.69     227.88          0   12347884          0 3194557 
------- -------- -------- ---------- ---------- ---------- ---------- ------- 
total   11031418   904.69     911.62          0   19745803    3109508 5654804 
 
Misses in library cache during parse: 0 
OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS 
 
Call     count      cpu    elapsed       disk      query    current    rows 
------- ------ -------- ---------- ---------- ---------- ---------- ------- 
Parse     7636     0.60       0.55          0          0          0       0 
Execute   7636     0.31       0.30          0          0          0       0 
Fetch    11484     0.58       0.43          0      22908          0    7636 
------- ------ -------- ---------- ---------- ---------- ---------- ------- 
total    26756     1.49       1.29          0      22908          0    7636 
 
Misses in library cache during parse: 2 

 
The total elapsed time in the database for the entire batch job was 913 seconds (15 minutes 
13 seconds). What I would like to point out is the sheer volume of queries that are being 

 
Performance Audit Report - 4 



 

20410 Town Center Lane, Suite 295 Cupertino, CA 95014   Tel: 408.253.8808   Fax: 408.253.4008    www.imaxsoft.com

submitted by this batch job. Essentially, the database is processing 11,031,418 queries in 
just over 15 minutes. That is an OUTSTANDING measure of database performance. 
Granted, NONE of the queries ever had to go to disk since all of the data easily fits into 
the SGA, but this is still an excellent measure of the performance of the database. 
What can also be derived is that the application obviously has to parse a query, submit it, get 
the response, analyze the results, and then submit the next query. As I have mentioned 
before, this is what I feel is the problem. The batch job is the one that is trying to keep up with 
database, not the other way around. That also explains the amount of resource utilization we 
are seeing from the batch job, and the low amount of resource utilization we are seeing from 
the database background processes. 
 
Oracle Statspack Samples Taken During Batch Job Run 
 
The following excerpts were parsed out of the Statspack report that took database statistical 
snapshots in 15 minute intervals. The report covers the period during the batch job run. The 
below excerpt depicts the top 5 events in the database based upon elapsed time spent doing 
it. It is an indicator of serious wait events. Serious wait events almost certainly appear above 
the CPU time event. However, you can see that the database is actually doing true work 
85% of the time, which is excellent. Any time spent waiting is on the redo log files, but with 
the amount of DML occurring within the batch job, this result is of no surprise. 
 
Top 5 Timed Events 
~~~~~~~~~~~~~~~~~~ 
Total 
Event                                               Waits    Time (s) Ela Time (%) 
-------------------------------------------- ------------ ----------- ------------ 
CPU time                                                        1,353       84.85% 
log file parallel write                            22,155         117        7.32% 
log file sequential read                            3,814          74        4.61% 
control file sequential read                       12,108          33        2.04% 
log file sync                                       3,676           8         .49% 

 
The below excerpt shows that the database is getting all of its data out of the SGA (memory). 
There was only 1 disk read access the entire time. Tons of writes, but again, this is expected 
based upon how the batch job is architected. Also note the lack of waits for buffer resources, 
so the queries are NEVER waiting for data. As soon as the query is executed the data is 
returned. No waits at all. 
 
Buffer Pool Statistics for DB: SUN Instance: SUN1 Snaps: 3 -11 
-> Standard block size Pools D: default, K: keep, R: recycle 
-> Default Pools for other block sizes: 2k, 4k, 8k, 16k, 32k 
                                                       Free    Write Buffer 
Number of  Cache      Buffer    Physical   Physical  Buffer Complete   Busy 
Buffers    Hit %        Gets       Reads     Writes   Waits    Waits  Waits 
---------- ----- ----------- ----------- ---------- ------- -------- ------ 
612,160    100.0 22,618,152            1    498,379       0        0      0 

 
The below excerpt shows an unbelievable amount of activity for the UNDO segments. The 
good news here is that the process is never waiting for UNDO, so there is no problems in this 
area. 
 
Rollback Segment Stats for DB: SUN Instance: SUN1 Snaps: 3 -11 
->A high value for "Pct Waits" suggests more rollback segments may be required 
->RBS stats may not be accurate between begin and end snaps when using Auto Undo 
managment, as RBS may be dynamically created and dropped as needed 
 
        Trans Table       Pct   Undo Bytes 
RBS No      Gets        Waits     Written        Wraps  Shrinks  Extends 
------ -------------- ------- --------------- -------- -------- -------- 
     0           32.0    0.00               0        0        0        0 
     1       41,332.0    0.00     253,551,272      200        0        0 
     2       30,981.0    0.00     154,326,188      114        0        1 
     3       48,270.0    0.00     296,233,638      380        0       20 
     4       30,603.0    0.00     173,984,436      118        0        1 
     5       24,173.0    0.00      43,615,108        5        0        0 
     6       27,053.0    0.00      64,748,460       31        1        0 

 
Performance Audit Report - 5 



 

20410 Town Center Lane, Suite 295 Cupertino, CA 95014   Tel: 408.253.8808   Fax: 408.253.4008    www.imaxsoft.com

     7       33,393.0    0.00     190,614,584      200        0        3 
     8       39,880.0    0.00     222,820,278      127        0        0 
     9       53,227.0    0.00     342,071,966      196        0       35 
    10       24,530.0    0.00      45,979,200       45        0        0 

 
The below excerpt shows that RAC functionality is not even part of the equation here since 
the batch job is only running on a single node. Therefore, RAC is not a part of the problem. 
 
Cluster Statistics for DB: SUN Instance: SUN1 Snaps: 3 -11 
 
Global Cache Service - Workload Characteristics 
----------------------------------------------- 
Ave global cache get time (ms):  0.5 
Ave global cache convert time (ms):  0.0 
 
Ave build time for CR block (ms):  0.0 
Ave flush time for CR block (ms):  0.0 
Ave send time for CR block (ms):  0.1 
Ave time to process CR block request (ms):  0.1 
Ave receive time for CR block (ms): 
 
Ave pin time for current block (ms):  0.0 
Ave flush time for current block (ms):  0.0 
Ave send time for current block (ms):  0.0 
Ave time to process current block request (ms):  0.0 
Ave receive time for current block (ms): 
 
Global cache hit ratio:  0.0 
Ratio of current block defers:  0.0 
% of messages sent for buffer gets:  0.0 
% of remote buffer gets:  0.0 
Ratio of I/O for coherence:  0.0 
Ratio of local vs remote work: 
Ratio of fusion vs physical writes:  0.0 
 
Global Enqueue Service Statistics 
--------------------------------- 
Ave global lock get time (ms):  0.0 
Ave global lock convert time (ms):  0.0 
Ratio of global lock gets vs global lock releases:  1.0 
 
GCS and GES Messaging statistics 
-------------------------------- 
Ave message sent queue time (ms):  0.1 
Ave message sent queue time on ksxp (ms):  0.5 
Ave message received queue time (ms):  0.0 
Ave GCS message process time (ms):  0.3 
Ave GES message process time (ms):  0.2 
% of direct sent messages:   97.4 
% of indirect sent messages:  0.5 
% of flow controlled messages:  2.0 

 
There are plenty of more statistics in the report, but I wanted to only pick out the sections that 
needed mentioning. If I didn’t mention something, that means that the metric is either in 
satisfactory levels, or just is not existent (in other words there are NO waits or contentions at 
all, or anything else in the database that would indicate a problem with the database not 
performing appropriately). 
 
Conclusions 
 
1. The database instance is performing at peak performance. 
2. The queries submitted by the batch job are written extremely efficient, and thanks to the 

proper use of bind variables, the throughput of servicing the queries is not affected. 
3. Since RAC functionality is not even being used in the environment during the batch job, it 

can not be presented as a culprit for database performance issues. 
 
So what is the problem? The sheer number of query executions (>11 million) performed by 
the batch job is what is causing the durations we are currently seeing. Again, think about 
what needs to happen: 
 

 
Performance Audit Report - 6 



 

20410 Town Center Lane, Suite 295 Cupertino, CA 95014   Tel: 408.253.8808   Fax: 408.253.4008    www.imaxsoft.com 
Performance Audit Report - 7 

1. Batch job parses and submits a query 
2. Database executes the query (unless it must parse first which it almost never does) 
3. Data set is created 
4. Data set is sent back to client 
5. Data set is analyzed and processed 
6. Batch job parses and submits next query 
 
I have already shown that the database is spending a total of 15 minutes doing the query 
work. The other 1 hour and 45 minutes is being spent performing steps 4-6. Network isn’t an 
issue in this case since the batch job is running locally on the database server. The hang-up 
is within the control of the application. 
 
Recommendations 
 
1. Efficiencies need to be added to the application code to try to cut down on the number of 

recursive query executions and try to satisfy more records with fewer queries. In other 
words, could the app be rewritten to perform updates on more than one record at a time? 
Instead of a separate UPDATE for each record, have one UPDATE to handle 100 
records (or whatever makes sense). For the SELECTs, why select each record one at a 
time? You could potentially handle this with the use of cursors where all viable records 
are selected at one time into a structure that you can fetch from by popping records off 
the stack one at a time until you process the whole stack. Using a cursor requires the use 
of only one SELECT statement instead of millions of SELECT statements. 

2. Make use of your RAC architecture! Try to figure out how to parallelize the batch job to 
possibly do half the processing on one node, and the other half on the other. This would 
require that the job be moved off the database server to be run on an app server. 


